
Ezra Tock
Thesis Advisor: Prof. Yuhao Zhu
December 1st, 2025

Analysis of N-BVH Ray
Tracing for Remote Use
and for Extension to
Dynamic Scenes 

Contents 

5.

N-BVH for Dynamic Scenes: Reconstruction,
delta compression, and static/dynamic split

4.

Remote Ray Tracing: Fully remote pipelines
and split pipelines

3.
Literature Review: NIF and N-BVH
2.
Introduction: Ray tracing and BVHs
1.

Conclusions and Reflections

● Introduction to ray tracing

● Bounding volume hierarchies

1.
Introduction 

Ray Tracing 

Backward Ray Tracing: simulate light transport by casting rays from the
camera, through each pixel, onto the scene
● More realistic than rasterization
● Computing ray-geometry intersection tests is the key computational

challenge

Applications: 3D rendering
● High-fidelity film and VFX, photo-realistic architectural visualization,

scientific simulations
● 3D gaming, training simulations, social VR spaces, preview rendering

Image from NVIDIA Developer “Ray Tracing”

Image from Peter Shirley et. al “Ray Tracing
in One Weekend”

B

C

D

A

Bounding Volume Hierarchies (BVHs) 

Geometry is typically represented by a mesh
with millions of triangles

Main idea: organize the geometry into a tree of
axis aligned bounding boxes (AABBs) to cull
large portions of the scene for each ray query

O(log N) instead of O(N)

Further optimizations:
● Surface area heuristics (SAHs)
● TLAS and BLAS

B C D

A

“Statuette” scene from Weier et. al[9]

● Fujieda et al. “Neural
Intersection function” (NIF)

● Weier et al. “N-BVH”

2. Literature
Review 

Fujieda et al. “Neural Intersection Function” (2023) 

Key insight: Traditional BVHs are bulky and require irregular
memory access patterns which are inefficient on GPUs

Design:
● Encode BLAS traversal queries with feature grids and feed

them to small MLPs
● Only practical for secondary rays: primary rays produce

unacceptable artifacts[3]

MLP Architecture:
● Dual-network strategy inspired by surface partitioning[4][7]

and space partitioning[6][8] literature
● Removes the need for a signed distance parameter

NIF example render (upper) and rendering pipeline (lower) from
Fujieda et al. “Neural Intersection Function”

Fujieda et al. “Neural Intersection Function” (2023) 

Ray aliasing: overlapping rays with different origins should
produce the same intersection result, but neural networks were
inconsistent
● Origin normalization: for the outer network, translate the

origin to the bounding box intersection, and for the inner
network, translate the origin to the surface

Ray encoding:
● High frequency geometry limits direct parameterization of

position and direction, so use 128 or 256 res feature grids
● Convert to spherical coordinates to reduce the dimension

Results: 35% faster traversal, 256KB instead of multiple GB per
object, and 31-39 dB reconstruction accuracy on the PSNR scale[3]

NIF outer network encoding scheme from Fujieda et al. “Neural
Intersection Function” The inner network requires an additional
distance feature in case the ray intersects an object at multiple
locations, which gets looked up in an additional 1D grid, and
gets concatenated along with the other feature vectors

Weier et al. “N-BVH: Neural Ray Queries with
Bounding Volume Hierarchies” (2024) 

Key insight: NIF is viewpoint-dependent which limits its use in fully
functional ray tracing pipelines

Design Strategies:
● Custom tree-cut structure for more strategic neural network

replacement as opposed to NIF’s entire BLAS replacement
● Adaptive depth for different geometric complexities by

training on prediction loss×ray-intersection probability

Ray Encoding:
● Encode 3-4 sampled points along the ray-box intersection

interval for higher likelihood of a point close to the surface
● Use multi-resolution hash grids and trilinear interpolation

NBVH tree-cut structure and rendering pipeline[9]

Weier et al. “N-BVH: Neural Ray Queries with
Bounding Volume Hierarchies” (2024) 

Pipeline Phase Estimated Time
for Statuette

Output

Geometry Loading ~8 seconds Triangle mesh in memory

BVH Construction ~25 seconds Full traditional BVH

Tree Cut Initialization <1 second Initial NBVH structure

Training Ray Generation ~15 seconds Ray query/response pairs

Neural Network Training ~90 seconds Trained NBVH weights

Tree Cut Optimization ~10 seconds Final NBVH structure

NBVH Loading ~2 seconds NBVH in GPU memory

Rendering 16-33ms Rendered frames

Component Size Size for
Statuette

Original Geometry
Representation ~64B × T 642MB

Feature Grids 4B × O ×
56R² ~10MB

MLP 4B × L × W ~300KB

Tree-Cut BVH 64B × N ~700KB

Total NBVH Sum of the
above

11.2MB (57x
compression)

Time estimates for the different phases of the NBVH pipeline for
Weier’s Statuette scene on his NVIDIA RTX 3090 GPU based on
various implementation hints (left), and Space requirements for

different components of the NBVH structure (right).

● Neural Network training dominates training time
due to over 2 million parameters

● Feature grids dominate memory footprint
● 57x compression atones 2-4x slower rendering

● Fully remote pipelines

● Split pipelines

3. Remote
Ray Tracing 

Fully Remote Pipelines
My setup: TurboVNC and VirtualGL
● TurboVNC creates a virtual X server
● VirtualGL intercepts GLX calls and redirects them

to the physical GPU
● Poor encoding efficiency

Traditional setup: Parsec, NICE DVC
● Hardware-accelerated encoding
● About 70% of typical end-to-end latency is

network traversal: render-time is trivial enough

Applications: Cloud gaming
● 2-4x slower render time, but having multiple

concurrent users improves GPU utilization

Compressing/Rendering Split: full NBVH compression on the server, transfer
the NBVH for local rendering
● 11MB Statuette scene transfers in seconds over 50-100Mbps broadband
● Applications: Compress app size of predetermined static scenes, with

potential manual tuning for certain objects’ feature grids

Split Pipelines

Static/Dynamic Split: Static geometry is compressed on the server-side once,
and dynamic geometry remains as a triangle mesh for traditional rendering
● Joint BVH and NBVH traversal requires both traditional ray-mesh

intersection tests and MLP inference when encountering an NBVH node
● Applications: Games with large static backgrounds and few dynamic

characters

Example Split: Steps 1-3 remote, steps 4-8
local
● Neural Network Training requires the

full scene geometry—defeats the
purpose of NBVH

● Theoretically saves marginal CPU time,
but it doesn’t make sense to do NBVH
locally cloud GPU resources are readily
available

Splits at Intermediate Stages of NBVH
Pipeline Phase Estimated Time

for Statuette
Output

1. Geometry Loading ~8 seconds Triangle mesh in memory

2. BVH Construction ~25 seconds Full traditional BVH

3. Tree Cut Initialization <1 second Initial NBVH structure

4. Training Ray Generation ~15 seconds Ray query/response pairs

5. Neural Network Training
~90 seconds Trained NBVH weights

6. Tree Cut Optimization ~10 seconds Final NBVH structure

7. NBVH Loading ~2 seconds NBVH in GPU memory

8. Rendering 16-33ms/frame Rendered frames

● Complete reconstruction
and delta compression

● Static/dynamic split

4. N-BVH for
Dynamic
Scenes 

Complete reconstruction:
● Pros: no accumulated error, simple update logic
● Compressing Statuette is 9,000× slower than 60fps which is unacceptable

for both continuous reconstruction and temporal caching
● MLP training already saturates GPU capacity

Delta compression:
● Freezing the MLP only saves 30-40% of training time because the forward

pass of the MLP is still required, and accuracy degrades
● Only retraining updated hash entries also causes retraining distant

unchanged regions
● Optimistic speedup of ~10×—still unacceptable

Complete Reconstruction and Delta
Compression 

Joint BVH and NBVH traversal:
● Mark nodes with MLP approximations as NBVH nodes
● When encountering an NBVH node in traversal, ray intersection must

also be tested with the dynamic child nodes
● Additional worst case slowdown, but still acceptable

Separate traversal with depth records:
● Additional slowdown for all NBVH ray queries, and repetition of

shallow BVH traversal
● Useful for fully remote rendering, server transmits frames with

additional 24-32 bit depth information

Useful for applications like cloud gaming, especially when large or repeated
static components are involved, and progressive refinement can be used for
dynamically determined static content

Static/Dynamic Partitioning 

5.
Conclusion 

Current Progress and Next Steps
Reflections about effective research:
● Learn by doing
● Have flexible pacing to stay focused on the main goal

Current Progress:
● NBVH can fit into remote ray tracing applications, and could enable 5-10× user density in applications

like cloud gaming
● NBVH is fundamentally infeasible for dynamic scenes
● Static/dynamic partitioning is the key feasible approach and allows significant memory compression

Next Steps:
● Verify bottleneck predictions with empirical results
● Implement efficient static/dynamic split for practical applications

Thank you 

[1] NVIDIA Corporation. "NVIDIA Video Codec SDK:
NVENC Programming Guide," NVIDIA Developer
Documentation, 2020. [Online]. Available:
https://developer.nvidia.com/video-codec-sdk.

[2] Cai, Wei. “A Message from the New IEEE Access
Editor-in-Chief.” IEEE Access, 2 Oct. 2025,
ieeeaccess.ieee.org/featured-articles/survey-cloud-gami
ng-future-computer-games/.

[3] Fujieda, Shin, et al. “Neural Intersection Function.”
arXiv.Org, 12 June 2023, arxiv.org/abs/2306.07191.

[4] Genova, Kyle, et al. “Learning Shape Templates with
Structured Implicit Functions.” arXiv.Org, 12 Apr. 2019,
arxiv.org/abs/1904.06447.

[5] MacDonald, J. David, and Kellogg S. Booth. “Heuristics
for Ray Tracing Using Space Subdivision - the Visual
Computer.” SpringerLink, Springer-Verlag, 10 July
2018, link.springer.com/article/10.1007/BF01911006.

References 
[6] Martel, Julien N. P., et al. “Acorn: Adaptive Coordinate

Networks for Neural Scene Representation.” arXiv.Org,
6 May 2021, arxiv.org/abs/2105.02788.

[7] Tretschk, Edgar, et al. “Patchnets: Patch-Based
Generalizable Deep Implicit 3D Shape Representations.”
arXiv.Org, 5 Feb. 2021, arxiv.org/abs/2008.01639.

[8] Wang, Peng, et al. “Neus: Learning Neural Implicit
Surfaces by Volume Rendering for Multi-View
Reconstruction.” arXiv.Org, 1 Feb. 2023,
arxiv.org/abs/2106.10689.

[9] Weier, Philippe, et al. “N-BVH: Neural Ray Queries with
Bounding Volume Hierarchies.” arXiv.Org, 25 May
2024, arxiv.org/abs/2405.16237.

[10] Yu, Zheng. “Ray Tracing in Computer Graphics.”
Highlights in Science, Engineering and Technology, 27
Dec. 2022,
www.researchgate.net/publication/366663130_Ray_Tr
acing_in_Computer_Graphics.

https://developer.nvidia.com/video-codec-sdk
http://ieeeaccess.ieee.org/featured-articles/survey-cloud-gaming-future-computer-games/
http://ieeeaccess.ieee.org/featured-articles/survey-cloud-gaming-future-computer-games/
http://arxiv.org/abs/2306.07191
http://arxiv.org/abs/1904.06447
http://link.springer.com/article/10.1007/BF01911006
http://arxiv.org/abs/2105.02788
http://arxiv.org/abs/2008.01639
http://arxiv.org/abs/2106.10689
http://arxiv.org/abs/2405.16237
http://www.researchgate.net/publication/366663130_Ray_Tracing_in_Computer_Graphics
http://www.researchgate.net/publication/366663130_Ray_Tracing_in_Computer_Graphics

