Ezra Tock

Thesis Advisor: Prof. Yuhao Zhu
December 1st, 2025

Analysis of N-BVH Ray
Tracing for Remote Use
and for Extension to
Dynamic Scenes

Contents

1

Introduction: Ray tracing and BVHs

2.
Literature Review: NIF and N-BVH

3

Remote Ray Tracing: Fully remote pipelines
and split pipelines

4

N-BVH for Dynamic Scenes: Reconstruction,
delta compression, and static/dynamic split

S.

Conclusions and Reflections

1 [)
e Introduction to ray tracing

Introduction | oo

Ray Tracing

Backward Ray Tracing: simulate light transport by casting rays from the

Light Source
camera, through each pixel, onto the scene _ 8
e More realistic than rasterization i
e Computing ray-geometry intersection tests is the key computational J
challenge Scene Object

Image from NVIDIA Developer “Ray Tracing”
Applications: 3D rendering

e High-fidelity film and VFX, photo-realistic architectural visualization,
scientific simulations

e 3D gaming, training simulations, social VR spaces, preview rendering

Image from Peter Shirley et. al “Ray Tracing
in One Weekend”

Bounding Volume Hierarchies (BVHSs)

Geometry is typically represented by a mesh

with millions of triangles

Main idea: organize the geometry into a tree of
axis aligned bounding boxes (AABBs) to cull

large portions of the scene for each ray query
O(log N) instead of O(N)

Further optimizations:
e Surface area heuristics (SAHSs)
e TLASandBLAS

“Statuette” scene from Weier et. al°!

e Fujieda et al. “Neural

2. Literature
Review M

Fujieda et al. “Neural Intersection Function” (2023)

Key insight: Traditional BVHs are bulky and require irregular

memory access patterns which are inefficient on GPUs

Design:
e Encode BLAS traversal queries with feature grids and feed

them to small MLPs
e Only practical for secondary rays: primary rays produce

unacceptable artifacts!®!

MLP Architecture:
0 o om0 s fav7 O e Q;Zoi‘
e Dual-network strategy inspired by surface partitioning“l”] Dﬂ(@ e 839%"
and space partitioning®®l literature C

e Removesthe need for a signed distance parameter

NIF example render (upper) and rendering pipeline (lower) from
Fujieda et al. “Neural Intersection Function”

Fujieda et al. “Neural Intersection Function” (2023)

Ray aliasing: overlapping rays with different origins should
produce the same intersection result, but neural networks were
inconsistent
e Origin normalization: for the outer network, translate the
origin to the bounding box intersection, and for the inner

network, translate the origin to the surface

Ray encoding:
e High frequency geometry limits direct parameterization of
position and direction, so use 128 or 256 res feature grids

e Convert to spherical coordinates to reduce the dimension

Results: 35% faster traversal, 256KB instead of multiple GB per

object, and 31-39 dB reconstruction accuracy on the PSNR scaleld!

Interpolation Concatenation of
feature vectors

MLP

i‘"‘L

o e e By

Touter
p: (%,y,2) ——p"(0,9) 5oition Grid

NIF outer network encoding scheme from Fujieda et al. “Neural
Intersection Function” The inner network requires an additional
distance feature in case the ray intersects an object at multiple
locations, which gets looked up in an additional 1D grid, and
gets concatenated along with the other feature vectors

Weier et al. “N-BVH: Neural Ray Queries with
Bounding Volume Hierarchies” (2024)

Tree cut optimization Cut-node training

Key insight: NIF is viewpoint-dependent which limits its use in fully E

functional ray tracing pipelines Neural node

Design Strategies: ﬁ

e Custom tree-cut structure for more strategic neural network ' /’ ;
Tree cu

replacement as opposed to NIF’s entire BLAS replacement -
e Adaptive depth for different geometric complexities by

training on prediction lossxray-intersection probability

Neural node
Ray Encoding:
e Encode 3-4 sampled points along the ray-box intersection

interval for higher likelihood of a point close to the surface

=
=
)
o
2
3
£
1]
&
e
2
=
=
]
v
o
2
s
=
3

e Use multi-resolution hash grids and trilinear interpolation

NBVH tree-cut structure and rendering pipelinel®

Weier et al. “N-BVH: Neural Ray Queries with

Bounding Volume Hierarchies” (2024)

e Neural Network training dominates training time

due to over 2 million parameters

Pipeline Phase Estimated Time Output C - Si Size for
for Statuette omponen 1ze Statuette
Geometry Loading ~8 seconds Triangle mesh in memory Original Geometry ~64B x T 642MB
Representation
BVH Construction ~25 seconds Full traditional BVH BxO
R Feature Grids 48 x > x ~10MB
Tree Cut Initialization <1 second Initial NBVH structure 56R
Training Ray Generation ~15 seconds Ray query/response pairs MLP 4B xLxW ~300KB
s Tree-Cut BVH 64B x N ~700KB
Neural Network Training ~90 seconds Trained NBVH weights : 7
Sum of the 11.2MB (57x
Tree Cut Optimization ~10 seconds Final NBVH structure LU IS above compression)
NBVH Loading ~2 seconds NBVH in GPU memory Time estimates for the different phases of the NBVH pipeline for
Weier’s Statuette scene on his NVIDIA RTX 3090 GPU based on
Rendering 16-33ms Randlaeet frnnes various implementation hints (left), and Space requirements for

different components of the NBVH structure (right).

e Feature grids dominate memory footprint
e 57x compression atones 2-4x slower rendering

3. Remote
Ray Tracing o

| .

Fully Remote Pipelines

My setup: TurboVNC and VirtualGL
e TurboVNC creates a virtual X server
VirtualGL intercepts GLX calls and redirects them

(J
: S
to the physical GPU erver
e Poor encoding efficiency *ﬁgz:ﬁ;:f
Application
Traditional setup: Parsec, NICE DVC Rendered
endere
e Hardware-accelerated encoding VirtualGL | —éls | TurboVNC
e About 70% of typical end-to-end latency is
GLX Framebuffer
network traversal: render-time is trivial enough il
Applications: Cloud gaming GPU

e 2-4xslower render time, but having multiple

concurrent users improves GPU utilization

Keyboard and
mouse input

Compressed
video frames

Client

TurboVNC
Viewer

Display

(a) Compressing/Rendering Split

Client

Split Pipelines wssener) AL ()

NBVH

Compressing/Rendering Split: full NBVH compression on the server, transfer m
the NBVH for local rendering
e 1IMB Statuette scene transfers in seconds over 50-100Mbps broadband
e Applications: Compress app size of predetermined static scenes, with

Display

potential manual tuning for certain objects’ feature grids

(b) Static/Dynamic Split

Server Client

Static/Dynamic Split: Static geometry is compressed on the server-side once,
and dynamic geometry remains as a triangle mesh for traditional rendering

e Joint BVH and NBVH traversal requires both traditional ray-mesh

BVH of
intersection tests and MLP inference when encountering an NBVH node - ld‘;"d
uild and train
o 0 . NBVH
e Applications: Games with large static backgrounds and few dynamic L
NBVH

characters
inference

e
Compare with
dynamic intersections

Splits at Intermediate Stages of NBVH

8. Rendering

16-33ms/frame

Pipeline Phase Estimated Time Output
for Statuette
1. Geometry Loading ~8 seconds Triangle mesh in memory
2. BVH Construction ~25 seconds Full traditional BVH
3. Tree Cut Initialization <1 second Initial NBVH structure
4. Training Ray Generation ~15 seconds Ray query/response pairs
S NGNS S Dt ~90 seconds Trained NBVH weights
6. Tree Cut Optimization ~10 seconds Final NBVH structure
7. NBVH Loading ~2 seconds NBVH in GPU memory

Rendered frames

Example Split: Steps 1-3 remote, steps 4-8
local
e Neural Network Training requires the
full scene geometry—defeats the
purpose of NBVH
e Theoretically saves marginal CPU time,
but it doesn’t make sense to do NBVH
locally cloud GPU resources are readily

available

4. N-BVH for
D |
y e Complete reconstruction
S and delta compression
C e n e S e Static/dynamic split

| .

Complete Reconstruction and Delta
Compression

Complete reconstruction:
e Pros:noaccumulated error, simple update logic
e Compressing Statuette is 9,000x% slower than 60fps which is unacceptable
for both continuous reconstruction and temporal caching

e MLP training already saturates GPU capacity

Delta compression:
e Freezing the MLP only saves 30-40% of training time because the forward
pass of the MLP is still required, and accuracy degrades
e Onlyretraining updated hash entries also causes retraining distant
unchanged regions

e Optimistic speedup of ~10x—still unacceptable

Static/Dynamic Partitioning

Joint BVH and NBVH traversal:
e Mark nodes with MLP approximations as NBVH nodes
e When encountering an NBVH node in traversal, ray intersection must
also be tested with the dynamic child nodes

e Additional worst case slowdown, but still acceptable

Separate traversal with depth records:
e Additional slowdown for all NBVH ray queries, and repetition of
shallow BVH traversal
e Useful for fully remote rendering, server transmits frames with
additional 24-32 bit depth information

Useful for applications like cloud gaming, especially when large or repeated
static components are involved, and progressive refinement can be used for

dynamically determined static content

(b) Static/Dynamic Split

Server Client

static nodes

% 2
i y :
- ?\I;R;};raln A.

Encounters ‘ l Fully

BVH of J

NBVH non-NBVH

NBVH Traditional
inference rendering

w
Compare with
dynamic intersections

Display

5.
Conclusion

| .

Current Progress and Next Steps

Reflections about effective research:
e Learnbydoing

e Have flexible pacing to stay focused on the main goal

Current Progress:
e NBVH can fitinto remote ray tracing applications, and could enable 5-10x user density in applications
like cloud gaming
e NBVH is fundamentally infeasible for dynamic scenes

e Static/dynamic partitioning is the key feasible approach and allows significant memory compression

Next Steps:
e \erify bottleneck predictions with empirical results

e Implement efficient static/dynamic split for practical applications

References

[1]

[2]

[3]

(4]

(5]

NVIDIA Corporation. "NVIDIA Video Codec SDK:
NVENC Programming Guide," NVIDIA Developer
Documentation, 2020. [Online]. Available:
https://developer.nvidia.com/video-codec-sdk.

Cai, Wei. “A Message from the New IEEE Access
Editor-in-Chief.” IEEE Access, 2 Oct. 2025,
ieeeaccess.ieee.org/featured-articles/survey-cloud-gami
ng-future-computer-games/.

Fujieda, Shin, et al. “Neural Intersection Function.”

arXiv.Org, 12 June 2023, arxiv.org/abs/2306.07191.

Genova, Kyle, et al. “Learning Shape Templates with
Structured Implicit Functions.” arXiv.Org, 12 Apr. 2019,
arxiv.org/abs/1904.06447.

MacDonald, J. David, and Kellogg S. Booth. “Heuristics
for Ray Tracing Using Space Subdivision - the Visual
Computer.” SpringerLink, Springer-Verlag, 10 July
2018, link.springer.com/article/10.1007/BF01911006.

(6]

[7]

[8]

[9]

Martel, Julien N. P, et al. “Acorn: Adaptive Coordinate
Networks for Neural Scene Representation.” arXiv.Org,
6 May 2021, arxiv.org/abs/2105.02788.

Tretschk, Edgar, et al. “Patchnets: Patch-Based
Generalizable Deep Implicit 3D Shape Representations.”
arXiv.Org, 5 Feb. 2021, arxiv.org/abs/2008.01639.

Wang, Peng, et al. “Neus: Learning Neural Implicit
Surfaces by Volume Rendering for Multi-View
Reconstruction.” arXiv.Org, 1 Feb. 2023,
arxiv.org/abs/2106.10689.

Weier, Philippe, et al. “N-BVH: Neural Ray Queries with
Bounding Volume Hierarchies.” arXiv.Org, 25 May
2024, arxiv.org/abs/2405.16237.

[10] Yu, Zheng. “Ray Tracing in Computer Graphics.”

Highlights in Science, Engineering and Technology, 27
Dec. 2022,
www.researchgate.net/publication/366663130 Ray Tr
acing in Computer Graphics.

https://developer.nvidia.com/video-codec-sdk
http://ieeeaccess.ieee.org/featured-articles/survey-cloud-gaming-future-computer-games/
http://ieeeaccess.ieee.org/featured-articles/survey-cloud-gaming-future-computer-games/
http://arxiv.org/abs/2306.07191
http://arxiv.org/abs/1904.06447
http://link.springer.com/article/10.1007/BF01911006
http://arxiv.org/abs/2105.02788
http://arxiv.org/abs/2008.01639
http://arxiv.org/abs/2106.10689
http://arxiv.org/abs/2405.16237
http://www.researchgate.net/publication/366663130_Ray_Tracing_in_Computer_Graphics
http://www.researchgate.net/publication/366663130_Ray_Tracing_in_Computer_Graphics

