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● Introduction to ray tracing

● Bounding volume hierarchies

1. 
Introduction 



Ray Tracing 

Backward Ray Tracing: simulate light transport by casting rays from the 
camera, through each pixel, onto the scene
● More realistic than rasterization
● Computing ray-geometry intersection tests is the key computational 

challenge

Applications: 3D rendering
● High-fidelity film and VFX, photo-realistic architectural visualization, 

scientific simulations
● 3D gaming, training simulations, social VR spaces, preview rendering

Image from NVIDIA Developer “Ray Tracing” 

Image from Peter Shirley et. al  “Ray Tracing 
in One Weekend”
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Bounding Volume Hierarchies (BVHs) 

Geometry is typically represented by a mesh 
with millions of triangles

Main idea: organize the geometry into a tree of 
axis aligned bounding boxes (AABBs) to cull 
large portions of the scene for each ray query

O(log N) instead of O(N)

Further optimizations:
● Surface area heuristics (SAHs)
● TLAS and BLAS
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“Statuette” scene from Weier et. al[9]



● Fujieda et al. “Neural 
Intersection function” (NIF)

● Weier et al. “N-BVH”

2. Literature 
Review 



Fujieda et al. “Neural Intersection Function” (2023) 

Key insight: Traditional BVHs are bulky and require irregular 
memory access patterns which are inefficient on GPUs

Design:
● Encode BLAS traversal queries with feature grids and feed 

them to small MLPs
● Only practical for secondary rays: primary rays produce 

unacceptable artifacts[3]

MLP Architecture:
● Dual-network strategy inspired by surface partitioning[4][7] 

and space partitioning[6][8] literature
● Removes the need for a signed distance parameter

NIF example render (upper) and rendering pipeline (lower) from 
Fujieda et al.  “Neural Intersection Function”



Fujieda et al. “Neural Intersection Function” (2023) 

Ray aliasing: overlapping rays with different origins should 
produce the same intersection result, but neural networks were 
inconsistent
● Origin normalization: for the outer network, translate the 

origin to the bounding box intersection, and for the inner 
network, translate the origin to the surface

Ray encoding: 
● High frequency geometry limits direct parameterization of 

position and direction, so use 128 or 256 res feature grids
● Convert to spherical coordinates to reduce the dimension

Results: 35% faster traversal, 256KB instead of multiple GB per 
object, and 31-39 dB reconstruction accuracy on the PSNR scale[3]

NIF outer network encoding scheme from Fujieda et al.  “Neural 
Intersection Function” The inner network requires an additional 
distance feature in case the ray intersects an object at multiple 
locations, which gets looked up in an additional 1D grid, and 
gets concatenated along with the other feature vectors



Weier et al. “N-BVH: Neural Ray Queries with 
Bounding Volume Hierarchies” (2024) 

Key insight: NIF is viewpoint-dependent which limits its use in fully 
functional ray tracing pipelines

Design Strategies:
● Custom tree-cut structure for more strategic neural network 

replacement as opposed to NIF’s entire BLAS replacement
● Adaptive depth for different geometric complexities by 

training on prediction loss×ray-intersection probability

Ray Encoding:
● Encode 3-4 sampled points along the ray-box intersection 

interval for higher likelihood of a point close to the surface
● Use multi-resolution hash grids and trilinear interpolation

NBVH tree-cut structure and rendering pipeline[9]



Weier et al. “N-BVH: Neural Ray Queries with 
Bounding Volume Hierarchies” (2024) 

Pipeline Phase Estimated Time 
for Statuette

Output

Geometry Loading ~8 seconds Triangle mesh in memory

BVH Construction ~25 seconds Full traditional BVH

Tree Cut Initialization <1 second Initial NBVH structure

Training Ray Generation ~15 seconds Ray query/response pairs

Neural Network Training ~90 seconds Trained NBVH weights

Tree Cut Optimization ~10 seconds Final NBVH structure

NBVH Loading ~2 seconds NBVH in GPU memory

Rendering 16-33ms Rendered frames

Component Size Size for 
Statuette

Original Geometry 
Representation ~64B × T 642MB

Feature Grids 4B × O × 
56R² ~10MB

MLP 4B × L × W ~300KB

Tree-Cut BVH 64B × N ~700KB

Total NBVH Sum of the 
above

11.2MB (57x 
compression)

Time estimates for the different phases of the NBVH pipeline for 
Weier’s Statuette scene on his NVIDIA RTX 3090 GPU based on 
various implementation hints (left), and Space requirements for 

different components of the NBVH structure (right).

● Neural Network training dominates training time 
due to over 2 million parameters

● Feature grids dominate memory footprint
● 57x compression atones 2-4x slower rendering



● Fully remote pipelines

● Split pipelines

3. Remote 
Ray Tracing 



Fully Remote Pipelines
My setup: TurboVNC and VirtualGL
● TurboVNC creates a virtual X server
● VirtualGL intercepts GLX calls and redirects them 

to the physical GPU
● Poor encoding efficiency

Traditional setup: Parsec, NICE DVC
● Hardware-accelerated encoding
● About 70% of typical end-to-end latency is 

network traversal: render-time is trivial enough

Applications: Cloud gaming
● 2-4x slower render time, but having multiple 

concurrent users improves GPU utilization



Compressing/Rendering Split: full NBVH compression on the server, transfer 
the NBVH for local rendering
● 11MB Statuette scene transfers in seconds over 50-100Mbps broadband
● Applications: Compress app size of predetermined static scenes, with 

potential manual tuning for certain objects’ feature grids

Split Pipelines

Static/Dynamic Split: Static geometry is compressed on the server-side once, 
and dynamic geometry remains as a triangle mesh for traditional rendering
● Joint BVH and NBVH traversal requires both traditional ray-mesh 

intersection tests and MLP inference when encountering an NBVH node
● Applications: Games with large static backgrounds and few dynamic 

characters



Example Split: Steps 1-3 remote, steps 4-8 
local
● Neural Network Training requires the 

full scene geometry—defeats the 
purpose of NBVH

● Theoretically saves marginal CPU time, 
but it doesn’t make sense to do NBVH 
locally cloud GPU resources are readily 
available

Splits at Intermediate Stages of NBVH
Pipeline Phase Estimated Time 

for Statuette
Output

1. Geometry Loading ~8 seconds Triangle mesh in memory

2. BVH Construction ~25 seconds Full traditional BVH

3. Tree Cut Initialization <1 second Initial NBVH structure

4. Training Ray Generation ~15 seconds Ray query/response pairs

5. Neural Network Training
~90 seconds Trained NBVH weights

6. Tree Cut Optimization ~10 seconds Final NBVH structure

7. NBVH Loading ~2 seconds NBVH in GPU memory

8. Rendering 16-33ms/frame Rendered frames



● Complete reconstruction 
and delta compression

● Static/dynamic split

4. N-BVH for 
Dynamic 
Scenes 



Complete reconstruction: 
● Pros: no accumulated error, simple update logic
● Compressing Statuette is 9,000× slower than 60fps which is unacceptable 

for both continuous reconstruction and temporal caching
● MLP training already saturates GPU capacity

Delta compression: 
● Freezing the MLP only saves 30-40% of training time because the forward 

pass of the MLP is still required, and accuracy degrades
● Only retraining updated hash entries also causes retraining distant 

unchanged regions
● Optimistic speedup of ~10×—still unacceptable

Complete Reconstruction and Delta 
Compression 



Joint BVH and NBVH traversal:
● Mark nodes with MLP approximations as NBVH nodes
● When encountering an NBVH node in traversal, ray intersection must 

also be tested with the dynamic child nodes
● Additional worst case slowdown, but still acceptable

Separate traversal with depth records:
● Additional slowdown for all NBVH ray queries, and repetition of 

shallow BVH traversal
● Useful for fully remote rendering, server transmits frames with 

additional 24-32 bit depth information

Useful for applications like cloud gaming, especially when large or repeated 
static components are involved, and progressive refinement can be used for 
dynamically determined static content

Static/Dynamic Partitioning 



5. 
Conclusion 



Current Progress and Next Steps
Reflections about effective research:
● Learn by doing
● Have flexible pacing to stay focused on the main goal

Current Progress:
● NBVH can fit into remote ray tracing applications, and could enable 5-10× user density in applications 

like cloud gaming
● NBVH is fundamentally infeasible for dynamic scenes 
● Static/dynamic partitioning is the key feasible approach and allows significant memory compression

Next Steps:
● Verify bottleneck predictions with empirical results
● Implement efficient static/dynamic split for practical applications



Thank you 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